

TRUMPF laserlassen

Gert van Wakeren | Sales Engineer Laser Technology

Agenda:

- Wat is laser?
- Principes laserlassen
- Voordelen laserlassen
- Voorwaarden laserlassen
- Toepassingen laserlassen
- Conclusies

PAUZE

Inkijk 3D metaalprinten

Wat is laser?

TRUMPF

2023

Opbouw laserbron

Werkingsprincipe

Gaslaser – TruFlow CO₂ laser

Werkingsprincipe Turboradialturbine Afbuigspiegel Eindspiegel Uitkoppelspiegel Ontladingsbuis Elektrodes

Vaste Stof Laser (VSL): TruDisk

Opbouw van een disklaser

Vaste-stof lasertechnologie van TRUMPF

TruDisk

TruMicro

TruFiber

TruPulse

TruMark

Van glasvezel naar laserspot: principe

Collimator Objektief d_{K} Θ_{f} G_{f} G_{f}

- Fiberdiameter wordt afgebeeld op plaatmateriaal
- Focusdiameter: $d_{0f} = d_K \frac{f}{f_C}$

=M

Legenda:

- d_K Fiberkerndiameter
- f_C Collimatorbrandpuntsafst.
- f Objectiefbrandpuntsafst.
- d_{0f} Focusdiameter
- M Afbeeldingsverhouding

TRUMPF

Opbouw TRUMPF laserbewerkingskop BEO D70

Power of choice

Principes laserlassen

TRUMPF

2023

Principe laserlassen

Geleidingslassen

TRUMPF

2,05 mm

Verschil inzetbereik TruPulse und TruFiber

Case: Laserlassen sensorbehuizing

TruFiber 300

- Überlappnaht
- d_{of} = 35 μm -150 W cw
- \rightarrow 4 m/min, geringer Verbindungsquerschnitt
- TruPulse 203
 - Kehlnaht
 - $d_{of} = 800 \ \mu m$
 - 700 W, 3 ms, 70 Hz
 - \rightarrow 1 m/min, großer Verbindungsquerschnitt
- → Laserauswahl erfolgt nach Abwägung Geschwindigkeit vs. Festigkeit

Laserlascurve

Overview of the TRUMPF welding portfolio

Laser and arc welding solutions

TruArc Weld 1000	TruLaser Weld 1000	TruLaser Station 7000	TruLaser Cell 3000	TruLaser Cell 5030	TruLaser Weld 5000	TruLaser Cell 7040
Arc welding	Laser welding	Laser welding	Laser cutting, Laser welding LMD	Laser cutting Basics in Laser welding	Laser welding	Laser cutting Laser welding LMD
Easy entry into fully automated arc welding with extremely simple operation and programming	Easy entry into fully automated laser welding with extremely simple operation and programming	Cost-efficient laser welding system with smallest footprint	Productive and universally applicable, also for individual customer solutions and automation	Low-cost entry into flexible laser processing, specialized for small batch sizes due to the low hourly machine rate	Specialized laser welding system with best accessibility for applications with best seam quality	Highly flexible laser processing machine with extensive functions and excellent precision even with high dynamics

Voordelen laserlassen

TRUMPF

2023

Typical sheet metal production

This is how you loose time

You spend some seconds cutting, a few minutes bending, several minutes welding and about half an hour grinding.

→ LASER WELDING WILL BRING YOU MANY BENEFITS.

Laser welding brings: high part quality...

Visible seams of the highest optical quality

Minimal component distortion

High-strength seams

→ REDUCED COMPONENT COSTS

...high productivity...

High process speed when welding

Significantly reduced reworking

→ REDUCED COMPONENT COSTS

... and a high degree of flexibility

Different welding processes in one machine, new designs

Deep welding:

- Highest productivity
- More designs possible

Heat conduction welding:

- Highes optical seam quality
- Radius without welding

FusionLine:

- Bridging of gaps
- Welding with filler material

Laser welding in sheet metal processing

For which components is laser welding a good idea?

The longer the **welding time** and/or the longer the **reworking**, the sooner laser welding pays for itself.

Welding time is usually long for

components that have a high proportion of welding seams

Reworking is usually long for components with

- special design requirements
- high functional requirements (no distortion, low tolerances, tightness)

Voorwaarden laserlassen

Vertrekpunt laserlassen: optimalisatie vanuit de procesketen

VA 1,5mm

S235 1,5mm

AlMg3 1,5mm

Opspantechniek niet vergeten

•

WeldGuide

Basics

Laser welding in sheet metal production.

Use the WeldGuide to make more productive use of your **TruLaser Weld 5000**. Benefit from TRUMPF experience and practical examples - Log in now with your MyTRUMPF account!

Register

WeldGuide

Highlight Features 👘 iz midzegarnegite 🖨 Parts 😣 to Coming up soon CAD optical models configurator CAD machine models For Free! TruLaser Weld 5000 n in ante a respectede Sy savingers **MyTRUMPF** Design WeldGuide Abdeckung Stuitur Tark Kiss Tele 10 Niltre 4 Biegung Your gateway to value. Nutzen Sie den WeldGuide um Ihre TruLaser Weld 5000 Sontiges 20 example parts MyTRUMPF user administration : -Solgementen Bingstrekolmiz Solgementer nitutmensfep Met in der son repr Mansulta imm Indemengen Inherbinnen Indemengen Inherbinnen

Real fixture models

TRUMPF know-how

Cloud technology - Easy Patches

Toepassingen

Application strategies

Laser welding Laser welding with filler wire

Hybrid welding

Cars made by laser

Excerpt of Applications and Technologies for Battery Packs

Battery modules

Laser-Welding (e.g. Laser-Remote-Welding

Framework structure Welding processes

Battery Tray Laser-Welding (e.g. Laser-wf-Welding)

Thermal Management Various Applications

Cover Sheet Laser CP¹ removal

Crash structure

Laser-Welding (e.g. Laser-Hybrid-Welding or Gas Metal Arc welding)

Underride protection

Confidential

Laser-Welding (e.g. Laser-Remote-Welding)

¹Cataphoretic paint

Excerpt of Applications and Technologies for E-drives

Steel Stator Core Stator Package Welding Single Sheets Cutting Hairpin Winding Hairpin Stripping Hairpin Welding Powerrail welding (U,V,W) **Rotor Shaft Rotor Shaft Welding** See also:

Confidential

https://www.youtube.com/watch?v=8bbjb7_jX6c

Conclusies

De applicatie is bepalend in de keuze van laserbron, optische configuratie en manipulatiesysteem.
 Vertrekpunten:

materiaal(dikte)

o kwaliteitseisen

o productiviteitseisen (laservermogen, beam-switch, fixed/scanning optics)

- Er is geen laserbron welke geschikt is voor alle applicaties en bijbehorende –eisen.
- Systeemoplossing en keuze laserbron is een complex samenspel. Aandachtspunten:
 - o nauwkeurigheidseisen
 - $\circ\,$ eisen wat betreft flexibiliteit
 - \circ seriegroottes
 - \circ logistieke keten

 \circ cyclustijdeisen

Laserlassen is slechts successol indien de volledige productieketen is afgestemd op de verbindingstechnologie

Inkijk 3D metaalprinten

Agenda

- 1) Technology and Process
- 2) Benefits
- 3) Applications

Technology comparison of LMF and LMD

TRUMPF combines the two most important metal technologies under one roof

Laser Metal Deposition (LMD)

Laser Metal Fusion (LMF)

Productive method for **repairing**, **coating** and **generating** components

-	***
-	****
-	***
(10 - 600 cm³ / h)	***
(< 0.5 mm)	**
(Ra 10-20 µm)	*

Application

Geometric complexity Building on top of existing parts Material bandwidth Build rate Level of detail / accuracy Surface quality **Precise** method for generative fabrication of **complex** parts out of a **powder bed**

****	(pre-heating if needed)
***	(only on flat surfaces)
***	-
**	(2 - 180 cm ³ / h)*
****	(< 0.1 mm)
***	(Ra 5-10 µm)

* depending on system configuration, process parameters, material & filling degree

TRUMPF Additive Manufacturing

Two complementary methods for metal

- Additive manufacturing of near net shape parts
- Small, complex parts

Source: Roland Berger

- Modification, coating and repairing of workpieces
- Build on existing (big) parts

Central Benefits

The use of LMF can achieve many different goals

Geometric complexity

Maximum geometric design freedom offers 3 major advantages:

- New geometries that cannot be produced with other methods
- Integration of functionalities
- Monolithic design

Speed

Reduction of production steps (e.g. tool-free production)

Protection of resources through low material and energy consumption – in both the production and in operation of the finished parts

Robust lightweight construction through hollow spaces, grid structures or bionic design

Cost reduction

Cost-effective production of small and mid-sized components, starting with lot size 1. Especially for complex structures ("complexity for free") e.g. small series and prototyping

LMF Machine Portfolio

Re-Entry with small size machine TruPrint 1000 up to high-end machine TruPrint 5000

TruPrint 1000	TruPrint 1000 Green Edition	TruPrint 2000	TruPrint 3000	TruPrint 5000	
Compact and robust 3D printing	Green laser: 3D printing of copper and other precious metals	Economical 3D printing with premium quality	Flexible solution for industrial 3D printing	Highly productive 3D printing for industrial serial production	
 Build cylinder: Ø 100 x H 100 mm Max. laser power at the workpiece (TRUMPF fiber laser): 1 x / 2 x 200 W Beam diameter: 30 / 55 μm 	 Build cylinder: Ø 97 x H 100 mm Max. laser power at the workpiece (TRUMPF fiber laser): 1 x 500 W Beam diameter: 200 µm 	 Build cylinder: Ø 200 x H 200 mm Max. laser power at the workpiece (TRUMPF fiber laser): 1 x / 2 x 300W Beam diameter: 55 μm Preheating: up to 200 °C Inert powder handling: yes 	 Build cylinder: Ø 300 x H 400 mm Max. laser power at the workpiece (TRUMPF fiber laser): 1 x / 2 x 500 W Beam diameter: 80 µm Preheating: up to 200 °C 	 Build cylinder: Ø 300 x H 400 mm Ø 290 x H 400 mm (reduction if preheating is >200 °C Max. laser power at the workpiece (TRUMPF fiber laser) 3 x 500 W Beam diameter: 80 μm Preheating: up to 500 °C (optional) Automatic process start: yes 	
		External powder management	External part and powder management		
		Powder management on an industrial scale	Part and powder management on an in-	dustrial scale	

Industry overview

LMF meets the manifold requirements of a wide range of industries

	Aerospace	Energy & turbines	Automotive	General Industries	Tool & die making	Medical	Dental	Development & Institutes	Fashion & Lifestyle	Jewelry	Job Shops
Materials	Titanium, aluminum, nickel- based alloys	Nickel-based alloys	Aluminum, steels	Aluminum, steels	Tool steel	Titanium, cobalt-chrome	Cobalt-chrome	Various	Bronze, steel, titanium	Precious metals, bronze	Various
Applications	Structural parts, brackets	Turbines, nozzles	Prototypes, tools, small series	Various	Dies, tools, tooling inserts	Implants, medical instruments	Dental crowns, bridges	Material developm., R&D for parts	Accessories, design objects	Rings, brooches, necklace pendants	Suppliers for multiple industries
Sample parts				*				È			

Absorber cooler (use case)

TruPrint 3000

●←● ↓ ●→●

Serial

Highlight

TRUMPF does not just produce 3D printing machines for the additive manufacturing branch. It also uses additive manufacturing in production to produce its own components. The absorber cooler is installed in high-performance CO2 lasers (30 kW). Created by TRUMPF Consulting for TRUMPF

"AM enables a quick adaptation of the through-flow optimization making the mounting of the aluminum core possible as a simple joining procedure."

Jürgen Mornhinweg, TRUMPF

Highlight

- This diode cooler is part of a moving sensor unit
- The lower weight results in lower G-Forces
- Conformal cooling increases the diodes lifetime
- Additionally electrical shielding is integrated

Created by TRUMPF Consulting

With the help of AM we were able to integrate multiple features in one part while simultaneously reducing the weight significantly. Additionally, assembly time could be reduced by 2 min.

More information

- Solid-state joint integrated
- Flexible hinge compensates assembly tolerances
- Integrated lens mounting
- Integrated aperture

More information

Confidential

Highlight

The serial product is only made out of one component instead of a complete assembly. That way, the economic efficiency could be increased by 30%.

Created by TRUMPF Consulting for TRUMPF

"The successful establishment of our own series applications demonstrates the time-demanding but sustainable use of this technology in our company."

Klaus Parey, TRUMPF

TruPrint 3000

More information

Fully stacked engine cooler build job

Serial production

•←• \downarrow $\rightarrow \bullet$

Highlight

Parts

- Reproducable part quality of the whole build plate • and build height
- Smart support structure between the parts to allow easy and save part separation
- Machine handling time per part is reduced by 85%

By stacking 7 parts on top of each other 7 times more parts can be produced in one build job. Additionally, the build time is reduced by 48% by using 2 instead of 1 laser

Max Boulter, TRUMPF

COST REDUCTION OPERATOR COST REDUCTION

HS-LMD on a Break disc

TruLaser Cell 3000 Laser Metal Deposition Cladding

Ð

Demo part: 300 mm, 120 mm Part size (H, Ø) Material Real parts: several meters Surface rate > 600 cm²/min Layer thickness 100 µm

This use case shows the coating by HS Laser Metal Deposition on a break disc.

WEAR AND CORROSION PROTECTION

METALLURGICAL BOND OF SUBSTRATE AND CLADDING

Highlight

HS Laser Metal Deposition is used to clad a break disk with a wear and corrosion resistant layer. This results in a longer lifetime of the break disc and the emission of less fine dust.

More information

Summary

TRUMPF as a reliable partner offering a full-service solution within AM

Global market leader for machine tools and laser technology

International sales and service network

Pioneer in 3D printing

More than 15 years of experience in additive technologies

Complete solution provider for machines and services

High-performance LMF portfolio

TruPrint Series

Robust AM machines for industrial series production

Progressive in Industry 4.0

Connected machines and technologies

Gert van Wakeren

Laser Technology +31 (6) 10655102 gert.vanwakeren@trumpf.com